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Abstract. This paper obtains exact bright, dark and singular dispersive optical solitons in birefringent fibers in presence of 
several perturbation terms. The governing coupled Schrödinger-Hirota equation is integrated to extract these soliton 
solutions. The method of undetermined coefficients is applied to retrieve these soliton solutions. Constraint conditions 
naturally emerge for these solitons to exist. 
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1. Introduction 
 
Optical solitons in birefringent fibers is an important 

area of research in the field of nonlinear optics.  The 
phenomena of birefringence occurs naturally in optical 
fibers. In a realistic situation, optical fibers are not 
perfectly symmetrical, diametrically. Therefore the two 
modes can propagate with different group velocity  and 
phase. Thus a pulse injected into an optical fiber  would 
split into two orthogonally polarized pulses and they will 
propagate with different group velocities. This leads to 
group velocity mismatch and hence differential group 
delay at the terminal end of the fiber. Therefore one 
encounters dispersed pulses and this phenomena is 
referred to as polarization mode dispersion. This is 
therefore a very unwanted feature that introduces several 
limitations to high bit-rate fiber optic communications, 
which eventually leads to erroneous data transmission 
across trans-oceanic and trans-continental distances. 

This paper studies dispersive optical solitons in 
birefringent fibers in presence of spatio-temporal 
dispersion in addition to group-velocity dispersion 
(GVD), intermodal dispersion and higher order 
dispersion terms. The search is for exact bright, dark and 
singular 1-soliton solution to the model. The method of 
undetermined coefficients will be the integration scheme 
adopted in this paper. This will lead to the soliton 
solutions along with their respective constraint 
conditions, also known as integrability criteria, that will 
guarantee the existence of these solitons.  

 
 

2. Governing equation 
 
The dynamics of soliton propagation through optical 

fibers is governed by the nonlinear Schrödinger’s equation 
(NLSE) [1-32]. However, in case of birefringence it is the 
vector coupled NLSE that is studied [3, 7, 25, 26]. For 
dispersive optical solitons, NLSE is transformed through Lie 
symmetry to Schrödinger-Hirota equation (SHE). This 
derivation has been discussed in several papers [1, 2, 4-6, 
19, 20, 29]. Thus, in birefringent fibers, it is the vector-
coupled SHE that represents the governing model, in this 
case. This paper will address the following dimensionless 
form of SHE [2, 11]: 
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Here, ),( txq  and ),( txr  represent the wave profile 

of the two pulses, j   represents the inter-modal dispersion, 

ja   represents group velocity dispersion GVD, jb  gives the 
spatio-temporal dispersion, jc is from self-phase modulation 
while jd  is due to the cross-phase modulation, then j   is 
the third order dispersion coefficient (3OD) while j   and 

j   are from the nonlinear dispersions [7, 25, 26]. 
Here, 2,1j . Also, the first term in both of these 

equations represents the temporal evolution of the pulses in 
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birefringent fibers. It needs to be noted that the inclusion 
of spatio-temporal dispersion was first proposed during 
2012 to keep the model well-posed [13, 22]. 

To start off with the integration of the model (1) and 
(2), the following hypothesis for the soliton solution 
structure is selected:  
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and 

)],(exp[),(),( 22 txitxPtxr                 (4) 

where  

jjjj txtx  ),(                   (5) 
 

for 2,1j . Here in (3) and (4), ),( txPj   represents 
the solitary wave profile and ),( txj  is the phase 
component of the solitons. Also from (5), j  is the 
soliton frequency for the two components, j  is the 
wave number of the two components and finally j  
represents the centers of phase. Substituting (3), (4) and 
(5) into (1) and (2) leads to 
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for real and imaginary part, respectively. Here, the 

notation jj  3  was introduced. This pair of 

relations (6) and (7) will now be analyzed for four 
different types of solitons that will now be discussed in 
details in subsequent section. 

 
 
3. Soliton solutions 
 
This section will obtain solutions to the model that 

was introduced in the previous section, given by (1) and 
(2).  Bright, dark and singular soliton solutions will be 
obtained along with their respective constraint 
conditions for its existence.  The methodology that will 
be adopted is the principle of undetermined coefficients. 
The study will now be split into the following four 
subsections. 
 

3.1 Bright solitons 
 
For bright soliton solution, starting hypothesis is 

given by [1-3, 7] 
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where  
)( vtxB                                 (9) 

 

In (8) and (9), jA  represents the amplitude of the 

solitons for the two components and B  is the width of the 
solitons and finally v  is the speed of the solitons for the two 
components. Substituting this hypothesis into (6) and (7) 
reduces them to 
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and  
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Application of balancing principle to (10) and (11) gives 
 

1jp                                    (12) 
 

for 2,1j . Next, from real part equation (10),  setting the 

coefficients of linearly independent functions to zero leads 
to 
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which is the relation between the amplitudes and the widths 
of the solitons for the two components.  From the imaginary 
part, similarly, the principle of undetermined coefficients 
leads to 
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which is the relation between the bright solitons’ 
amplitudes and their width. The constraint relation 
therefore is 
 

0))((  jjjjjjjj               (19) 
 

Finally (15), for 2,1j  gives the width of the 

solitons as 
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Therefore the width of the bright soliton for the two 
components is completely determined from the given 
parameters. Now, this provokes the constraint 
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for these bright solitons to exist. Thus, dispersive bright 
solitons in birefringent fibers are: 
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with the deinition of parameters and constraints listed 
above. 
 

3.2 Dark solitons 
 

For dark soliton solutions, the starting hypothesis is 
[1-3, 7] 
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for 2,1j and the definition of   being the same as in 
(9). In this case jA  , for 2,1j  and B  are free 
parameters.  From this hypothesis (6) and (7) 
respectively reduce to: 
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From balancing principle, the same value of jp  as in 

(12) is recovered. Next, from the undetermined coefficients 
of real part equation (25), the following relations are 
obtained: 
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The imaginary part equation (26) gives 
 

jj

jjjjjjjj

b

bBa
v








1

322 22

           (29) 

 

jj

jjjjjjjj

jjjj

b

AAb

Ba

v



























1

3

82
222

2

              (30) 

and 

06 222  jjjjj AAB                         (31) 
 

From (29), one gets 
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This introduces the integrability criteria for dark solitons 
as  
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Similarly, as in bright solitons, the free parameter B  is 
given in terms of soliton prameters as 
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with the same restriction (21).  Finally, dispersive dark 
solitons in birefringent fibers are: 
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with the deinition of parameters and constraints listed 
above. 
 

3.3 Singular solitons (Type-1) 
 
For singular solitons, the starting hypothesis is 

given by [1,2] 
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with jA   and B  again being free parameters. This 

choice reduces (6) and (7) to  
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respectively. Application of balancing principle to (38) 
and (39) gives (12). Next, from real part equation (38), 
setting the coefficients of linearly independent functions 
to zero leads to 
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which is the relation between the amplitudes and the 
widths of the solitons for the two components.  From the 

imaginary part, similarly, the principle of undetermined 
coefficients leads to (15), (16) and (17). Now, (17), with 
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which is the relation between the bright solitons’ amplitudes 
and their width. Also relations (20) and (21) are applicable 
in this case. The constraint condition for this relation to hold 
is given by 
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Therefore singular solitons, of first kind, for birefringent 

fibers are: 
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with the deinition of parameters and constraints are given. 
 

3.4 Singular solitons (Type-2) 
 
For dark soliton solutions, the starting hypothesis is 
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where the definition of   being the same as in (9). In this 

case jA  , for 2,1j  and B  are free parameters. From 
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The same logical argument as in the case of dark 
solitons follow for this kind of singular solitons.   
Therefore all parameter definitions and their respective 
constraints stay the same as in Section 4.2. Therefore 
singular solitons,  of second kind, for birefringent fibers 
are: 
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4. Conclusion 
 
This paper studied dispersive optical solitons in 

birefringent fibers with vector-coupled SHE. The 
method of undetermined coefficients retrieved bright, 
dark and singular soliton solutions to the model. The 
constraint conditions ensure their existence.  The results 
of this paper carry a lot of prospect into future. 
Additional integration schemes will be applied to such 

model. These include Lie symmetry analysis, GG -

expansion scheme, Kudryashov’s method, Riccati 
equation schem, exp-function method and others.  Later, 
these results will be extended to the case of DWDM 
systems and also to optical fibers as well as magneto-
optic waveguides. Additionally, conservation laws for 
bright solitons will be obtained and these results will be 
dissemenated in other journals. 
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